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Preface

Application of optimal control theory to flow control problems has recently attracted increased

attention since the prominent works of F.Abergel and R.Temman (1990,(1)), J.A.Burns and

S.Kang (1991,(2)) , M.D.Gunzburger et al. (1992,(3)), S.S.Joshi et al. (1997,(4)), T.R.Bewley

and S.Liu (1998, (5)), V.Barbu and S.S.Sritharan (1998,(6)), and so on. A key element of

an optimal flow control problem is the minimization of an objective or cost functional which

provides a quantitative measure of the desired objective and depends critically on the solution

(known as the optimal solution) that satisfies the partial differential equations governing the

fluid flow. For instance, the integral of the dissipation function may be employed as an objective

functional, the governing PDEs are the Navier-Stokes equations, and their optimal solution

represents the flow with minimum drag on a body (e.g., (1)).

In this work, the optimal control problems of fluid flows with state constraint are investi-

gated.

In Chapter 1, we shall study the optimal control problems of 3-D Navier-Stokes equations

with state constraint of pointwise type. Strong results in 2-D are also given. The idea applied

is essentially due to V.Barbu (7). Therein the maximum principle of optimal control problems

with state constraint of pointwise type for linear evolution equations in Banach spaces are

obtained. Since here the governing system is nonlinear equations, the arguments will be more

precise and constructive. The results presented in Chapter 1 have bee published in (8).

In Chapter 2, we shall give the similar results as in Chapter 1 for optimal control problems

governed by Magnetohydrodynamic equations, which describe the motion of the conductive

flows in a magnetic field. Since this system is a coupling of Navier-Stokes equations and Maxwell

equation, the approach to obtain the optimality system is not straight forward from the results

for Navier-Stokes equations. Moreover, the optimal control problem for Magnetohydrodynamic

equations contains itself great physical interesting. The results appeared in this chapter have

been published in (9).

In Chapter 3, we shall study the optimal control problems governed by linearized Navier-

Stokes equations, or to say, Stokes-Oseen flows. The Dirichlet boundary control and the state

constrained of periodic type are considered. This unboundedness of the control problem will

cause difficulty mathematically, but the control on boundary usually invokes great interest since

it is sometimes more conveniently implementable in engineering. The objective of cost functional
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is to minimize the vorticity of the flow field, which invokes great interest physically which will
be mentioned in Chapter 2 and Chapter 3. However, the way to approach the optimality system
in this case will be more constructive. This is also one main difference between this work and
works mentioned in Chapter 3. The results presented in Chapter 3 have been published online
in (10).

In Chapter 4, the feedback form of the Dirichlet boundary optimal control for the time
periodic control problems of Stokes-Oseen equations will be given. Since here the optimal
control problem considered is unbounded, a prior regularity results for the optimal solution will
be given. Thanks to the maximum principle and regularity results for the optimal solution,
we can obtain the feedback form of the optimal control, and we can apply it to the periodic
Navier-Stokes equations to refine some defect property of the periodic solutions.

In the period of doctoral study, the author is also identified as a early stagy researcher with
funds support in the project
Marie Curie Initial Training Network (ITN) Call: FP7-PEOPLE-2007-1-1-ITN, no. 213841-2.
which is directed by professor Dr. Aurel Rascanu.
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1

Optimal control of Navier-Stokes
equations with state constraint

1.1 Introduction

In this chapter, we shall study the optimal control problem

(P) Minimize
1
2

∫ T

0

(∫

Ω

|C (y(t,x)− y0(t,x))|2
)

dxdt +
∫ T

0

h(u(t))dt;

subject to 



∂y
∂t − ν4y + (y · ∇)y +∇p = D0u + f0 in Ω× (0, T ),
y(0) = y0 in Ω,
∇ · y = 0 in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),

(1.1.1)

y(t) ∈ K, ∀t ∈ (0, T ), (1.1.2)

Here Ω is a bounded and open subset of RN (N = 2, 3) with smooth boundary ∂Ω. The source
field f0 ∈ L2(0, T ; (L2(Ω))N ). The operator D0 ∈ L(U ; (L2(Ω))N ), and the control function
u ∈ L2(0, T ;U), where U is a Hilbert space. The function h : U → (−∞,+∞] is convex and
lower semicontinuous, y0 ∈ L2(0, T ;H), and the operator C ∈ L(V, H). Here K is a closed
convex subset in H. where

H = {y;y ∈ (L2(Ω))N ,∇ · y = 0,y · n = 0 on ∂Ω}, (1.1.3)

V = {y;y ∈ (H1
0 (Ω))N ,∇ · y = 0 }. (1.1.4)

We endow the space H with the norm of (L2(Ω))N , and denote by 〈·, ·〉 the scalar product
of H, 〈·, ·〉(V,V ′) the paring between V and its dual V ′ with the norm ‖ · ‖V ′ . Denote by the
symbol ‖ · ‖ the norm of the space V , which is defined by

‖ y ‖2=
N∑

i=1

∫

Ω

|∇yi|2dx,
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1. OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS WITH STATE
CONSTRAINT

and by the symbol | · | the norm of RN and (L2(Ω))N .

Let P : (L2(Ω))N → H be the orthogonal projection on H(the Leray projector), and set

a(y, z) =
∫

Ω

∇y · ∇z,∀y, z ∈ V , (1.1.5)

A = −P4, D(A) = V ∩ (H2(Ω))N . (1.1.6)

Equivalently,

〈Ay, z〉 = a(y, z), ∀y, z ∈ V.

The stokes operator A is self-adjoint in H, A ∈ L(V, V ′) and 〈Ay,y〉 = ‖y‖2,∀y ∈ V . Finally,
consider the trilinear function

b(y, z,w) =
N∑

i=1

∫

Ω

yiDizjwjdx, (1.1.7)

and we denote by B : V → V ′ by

By = P (y · ∇)y, ∀y ∈ V, (1.1.8)

or equivalently, 〈B(y),w〉 = b(y,y,w), ∀y,w ∈ V .

We briefly present here some fundamental properties of the trilinear functional b(·, ·, ·) defin-
ing the inertial operator B (see P.Constantin and C.Foias(11), R.Temam(12), V.Barbu(13)).

Proposition 1.1.1. Let 1 ≤ N ≤ 3. Then,

b(y, z,w) = −b(y,w, z); (1.1.9)
|b(y, z,w)| ≤ C‖y‖m1‖z‖m2+1‖w‖m3 , (1.1.10)

where m1,m2,m3 are positive numbers, satisfying:
{

m1 + m2 + m3 ≥ N
2 , if mi 6= N

2 ,∀i ∈ {1, 2, 3};
m1 + m2 + m3 > N

2 , if ∃i ∈ {1, 2, 3},mi = N
2 .

We note also the interpolation inequality:

‖y‖m ≤ C‖y‖1−α
l ‖y‖α

l+1, (1.1.11)

where α = m− l ∈ (0, 1). Here ‖ · ‖m denotes the norm of the Sobolev space Hm(Ω).

Let f(t) = P f0(t) and D ∈ L(U,H) be given by D = PD0, where P : (L2(Ω))N → H is the
projection on H. Then we may rewrite the optimal control problem (P ) as:

(P) Min
1
2

∫ T

0

|C (y(t)− y0(t))|2dt +
∫ T

0

h(u(t))dt;

subject to {
y′(t) + νAy(t) + B(y(t)) = Du(t) + f(t),
y(0) = y0,

(1.1.12)
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1.2 Existence results

with state constraint

y(t) ∈ K, ∀t ∈ [0, T ]. (1.1.13)

The function y : [0, T ] → H is said to be weak solution to equation (1.1.12) if y ∈ Yw =

L2(0, T ;V ) ∩ Cw(0, T ;H) ∩W 1,1(0, T ;V ′)
{

d
dt 〈y(t),Ψ〉(V ′,V ) + νa(y,Ψ) + b(y,y,Ψ) = 〈f + Du,Ψ〉(V ′,V ) a.e. in (0, T ),
y(0) = y0, ∀Ψ ∈ V,

(1.1.14)

where Cw(0, T ;H) is the space of weak continuous functions y : [0, T ] → H.

The function y is said to be strong solution to equation (1.1.12) if y ∈ W 1,1([0, T ];H) ∩
L2(0, T ;D(A)), and (1.1.12) holds with dy

dt ∈ L2(0, T ;H).

The following hypothesis will be in effected throughout this chapter:

(i) K ⊂ H is a closed convex subset with nonempty interior;

(ii) C ∈ L(V ;H), D ∈ L(U ;H), y0 ∈ L2(0, T ;H ∩D(C ∗C )), f ∈ L2(0, T ;H), y0 ∈ V ;

(iii) h : U → (−∞,+∞] is a convex lower semicontinuous function. Moreover, there exist α > 0

and C ∈ R such that

h(u) ≥ α‖u‖2U + C, ∀u ∈ U. (1.1.15)

When we study problem (P) in the case that K is a closed convex subset of V , we need

assumption

(ii’) C ∈ L(V ;H), D ∈ L(U ;V ), y0 ∈ L2(0, T ;H ∩D(C ∗C )), f ∈ L2(0, T ;H), y0 ∈ V .

1.2 Existence results

By admissible pair we mean (y,u) ∈ Pw = {(y,u) ∈ Yw × L2(0, T ;U); (y,u) solution to

(1.1.14), y(t) ∈ K, ∀t ∈ [0, T ]}. An optimal pair is an admissible pair which minimizes (P ). To

get the existence of optimal solution, we shall assume there exists at least one admissible pair.

Theorem 1.2.1. The optimal control problem (P) has at least one optimal pair (ŷ, û). In 2-D,
ŷ is strong solution to equation (1.1.12).

Remark 1.2.1. When N = 3, if we assume that the admissible control set is a bounded subset
of L2(0, T ;U), then we can consider the strong solution in a local time interval (0, T ∗). By the
similar method applied in the proof of Theorem 1.2.1, we can get the existence result, and the
optimal state function ŷ ∈ W 1,2(0, T ∗;H)∩L2(0, T ∗;D(A)). Moreover, the same result follows
when the state constraint set K is a closed convex subset of V .

1.3 The maximum principle

To get the maximum principle, we need to consider the strong solution of the Navier-Stokes

equations. When N = 3, we need to consider the problem in such case with bounded admissible

control set Uad = {u ∈ L2(0, T ;U); ‖Du‖L2(0,T ;H) ≤ L}, and then we can consider the strong
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1. OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS WITH STATE
CONSTRAINT

solution to Navier-Stokes equation in (0, T ∗), where 0 < T ∗ = T (L + δ) < T (L). Here δ > 0 is
a fixed constant, and T (L) is given by

T (L) =
ν

3C3
0 [‖y0‖2 + ( 2

ν )(‖f‖2L2(0,T ;H) + L2)]3
. (1.3.1)

Denote D(h) = {u ∈ L2(0, T ;U);
∫ T

0
h(u)dt < +∞}. When N = 3, we shall assume that

D(h) ⊂ Uad. (1.3.2)

With this assumption, we can consider the strong solution in [0, T ∗] in 3-D without control
constraint which is included in the definition of the function h inexplicitly.

Since in 2-D, the strong solution to equation (1.1.12) exists on arbitrary time interval (0, T ),
such assumption is unnecessary. We still denote the interval [0, T ∗] where assumption (1.3.2)
holds by [0, T ].

We need also the following assumption:
(iv) There exists (z̃, ũ) ∈ C(0, T ;H)× L2(0, T ;U) solution to equation

{
z̃′(t) + νAz̃ + B′(y∗)z̃ = B(y∗) + Dũ(t) + f(t),
z̃(0) = y0.

(1.3.3)

such that z̃(t) ∈ intK, for t in a dense subset of [0, T ].
Here y∗ is the optimal state function for the optimal control problem (P ). B′(y∗) is the

operator defined by
〈B′(y∗)z, w〉 = b(y∗, z,w) + b(z,y∗,w).

Inasmuch as
B(y∗) ∈ L2(0, T ;H), |(B′(y∗)z, z)| ≤ ν

4
‖z‖2 + Cν |z|2,

we know that equation (1.3.3) has a solution z̃ ∈ W 1,2([0, T ];H) ∩ L2(0, T ;D(A)).

Theorem 1.3.1. Let (y∗(t),u∗(t)) be the optimal pair for the optimal control problem (P ).
Then under assumptions (i)∼(iv), there are p ∈ L∞(0, T ;H) and ωωω ∈ BV ([0, T ];H), such that:

D∗p(t) ∈ ∂h(u∗(t)) a.e. in [0, T ], (1.3.4)

p(t) = −
∫ T

t

U(s, t)(C ∗C (y∗(s)− y0(s)))ds−
∫ T

t

U(s, t)dωωω(s), (1.3.5)

and ∫ T

0

〈dωωω(t),y∗(t)− x(t)〉 ≥ 0,∀x ∈ K. (1.3.6)

Here D∗, C ∗, B′(y∗(t))∗, are the adjoint operators of D, C and B′(y∗(t)) respectively,
U(s, t) is the evolution operator generated by the operator νA + B′(y∗(t))∗. We recognize in
(1.3.5) the mild form of the dual equation

{
p′(t) = νAp(t) + B′(y∗)∗p(t) + C ∗C (y∗(t)− y0(t)) + µωωω(t), a.e. in (0, T ),
p(T ) = 0.

(1.3.7)
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1.4 Examples

Theorem 1.3.2 below is the analogue of Theorem 1.3.1 under the weaker assumption :
(v) K is a closed convex subset of V , and there exists (z̃, ũ) ∈ C(0, T ;H)×L2(0, T ;U) solution
to equation (1.3.3), such that z̃(t) ∈ intV K, for t in a dense subset of [0, T ].

Here intV K is the interior of K with respect to topology of V .

Theorem 1.3.2. Let (y∗(t),u∗(t)) be the solution for optimal control problem (P ). Then under
assumptions (ii’),(iii),(v), there are p ∈ L∞(0, T ;V ′),ωωω ∈ BV ([0, T ];V ′), such that (1.3.4) and
(1.3.5) hold, and (1.3.6) hold in the sense of

∫ T

0

〈dωωω(t),y∗(t)− x(t)〉(V ′,V ) ≥ 0,∀x ∈ K. (1.3.8)

We shall consider the reflexive Banach space E as H or V , and denote by (·, ·) the dual
product between E and it’s dual of E (When E = H, it is the scalar product in H), by ‖ · ‖
the norm of E. Under the hypothesis of Theorem 1.3.1 or the hypothesis of Theorem 1.3.2, We
give a corollary here:

Corollary 1.3.1. Let the pair (y∗,u∗) be the optimal pair in problem (P), then there exist ωωω∈
BV ([0, T ];E′) and p satisfying along with y∗,u∗, equations (1.3.4), (1.3.5), (1.3.6) (or(1.3.8))
and

ωωωa(t) ∈ NK(y∗(t)), a.e.t ∈ (0, T ), (1.3.9)

dωωωs ∈ NK(y∗). (1.3.10)

Here ωωωa(t) is the weak derivative of ωωω(t), and dωωωs is the singular part of measure dωωω.
NK(y∗(t)) is the normal cone to K at y∗(t), and NK(y∗) is the normal cone to K at y∗ which
is defined by

NK(y) = {µ ∈ M(0, T ;E′);µ(y − x) ≥ 0,∀x ∈ K} (1.3.11)

1.4 Examples

In this section, we shall give some applications of the above results in some special cases of
state constraints wherein Theorem 1.3.1 and Theorem 1.3.2 can be applied.

Example 1.4.1. Let K be the set K = {y ∈ H;
∫
Ω
|y(x)|2dx ≤ ρ2}. Then K is a closed convex

set in H. Since
‖z̃‖C([0,T ];H) ≤ C(‖B(y∗) + Dũ + f‖L2(0,T ;H))),

we may apply Theorem 1.3.1 to get the necessary condition of the optimal control pair after
checking whether condition (iv) is satisfied or not. The set K physically gives a constraint on
the turbulence kinetic energy. In this case, the maximum principle can be described as following:

D∗p(t) ∈ ∂h(u∗(t)) a.e. in [0, T ], (1.4.1)

{
p′1(t) = νAp1(t) + (B′(y∗(t))∗)p1(t) + C ∗C (y∗(t)− y0(t)) + ωωωa(t), a.e. in (0, T ),
p1(T ) = 0.

(1.4.2)
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1. OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS WITH STATE
CONSTRAINT

{
p′2(t) = νAp2(t) + (B′(y∗(t))∗)p2(t) + dωωωs, a.e. in (0, T ),
p2(T ) = 0.

(1.4.3)

Moreover,
ωωωa(t) ∈ NK(y∗(t)) = {λ(t)y∗(t);λ(t) ≥ 0, a.e. in (0, T )}. (1.4.4)

Here p1,p2 is the decomposition of p, that is p(t) = p1(t) + p2(t). Since ωωωa ∈ L2(0, T ;H),
dωωωs is the singular part of the measure dωωω, we know that equation (1.4.2) has a strong solution
p1 ∈ C([0, T ];H), while equation (1.4.3) has only a mild solution p2(t) = − ∫ T

t
U(s, t)dωωωs.

Example 1.4.2. Let K be the so called Enstrophy set

K = {y ∈ V ;
∫

Ω

|∇ × y|2dx ≤ ρ2},

where ∇× y = curl y(x). It is true that the norm |∇× y| is equivalent to the norm ‖y‖ in the
space V . In fluid mechanics, the enstrophy E(y) =

∫
Ω
|∇× y|2dx can be interpreted as another

type of potential density. More precisely, the quantity directly related to the kinetic energy in
the flow model that corresponds to dissipation effects in the fluid. It is particularly useful in the
study of turbulent flows, and it is often identified in the study of trusters, as well as the flame
field. Enstrophy set gives a constraint on the vorcity of the fluid motion. Since

‖z̃‖C([0,T ];V ) ≤ C(‖B(y∗) + Dũ + f‖L2(0,T ;H)),

we may apply Theorem 1.3.2 to get the necessary condition of the optimal control pair after
checking whether condition (v) is satisfied or not. In this case, the maximum principle can be
described by (1.4.1), (1.4.2) and (1.4.3). Moreover,

ωωωa(t) ∈ NK(y∗(t)) = {λ(t)Ay∗(t);λ(t) ≥ 0, a.e. in (0, T )}.

Example 1.4.3. Let K be the so called Helicity set,

K = {y ∈ V ;
∫

Ω

〈y, curl y〉2dx + λ

∫

Ω

|∇y|2dx ≤ ρ2},

where λ, ρ are positive constants. The helicity set plays an important role in fluid mechanics,
and in particular, it is an invariant set of Euler’s equation for incompressible fluids(See (14)).
By the same argument as in Example 1.4.2, we know that it is feasible to apply Theorem 1.3.2
to get the necessary condition of the optimal pair when the state constrained set is Helicity
set, and in this case, the maximum principle can be described by (1.4.1), (1.4.2) and (1.4.3).
Moreover,

ωωωa(t) ∈ NK(y∗(t)) = {λ(t)(Ay∗(t) + curly∗(t));λ(t) ≥ 0, a.e. in (0, T )}.
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2

Optimal control problems with
state constraint governed by
MHD equations

2.1 Introduction

In this chapter, we shall study the optimal control problem

(P) Minimize
1
2

∫ T

0

(∫

Ω

|C (y(t,x)− y0(t,x))|2
)

dxdt +
∫ T

0

h(u(t))dt;

subject to the magnetohydrodynamic (MHD) equation




∂y
∂t − ν4y + (y · ∇)y +∇(B2

2 )− (B · ∇)B +∇p = D0u + f0, in Ω× (0, T ),
∂B
∂t − ηcurl(curlB) + (y · ∇)B− (B · ∇)y = g, in Ω× (0, T ),
y(0) = y0,B(0) = B0, in Ω,
∇ · y = 0,∇ ·B = 0, in Ω× (0, T ),
y = 0,B · n = 0, (curlB)× n = 0, on ∂Ω× (0, T ).

(2.1.1)

with state constraint

y(t) ∈ K, ∀t ∈ (0, T ), (2.1.2)

where K is a closed convex subset in H. Here Ω is a bounded and open subset of RN (N = 2, 3)

with smooth boundary ∂Ω, T > 0 is a given constant, ν > 0 is the viscosity constant, f0 ∈
L2(0, T ; (L2(Ω))N ) is a source field, y(x, t) = (y1(x, t), · · · , yN (x, t)) is the velocity vector, p

stands for the pressure, D0 ∈ L(U ; (L2(Ω))N ), and u ∈ L2(0, T ;U), where U is a Hilbert space.

B(x, t) = (B1(x, t), · · · , BN (x, t)) is the magnetic field, η > 0 is the magnetic resistivity. The

function g ∈ L2(0, T ; (L2(Ω))N ) and divg = 0.

The function h : U → (−∞,+∞] is convex and lower semicontinuous, y0 ∈ L2(0, T ;H),

and C ∈ L(V, H). As in Chapter 1, the same two cases of physical interest are covered by the

cost functional of this form.
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2. OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINT
GOVERNED BY MHD EQUATIONS

When N = 2, the MHD equation is the modification of equations (2.1.1) by substituting

the term curl(curlB) by ˜curl(curlB) and the boudary condition curlB× n = 0 by curlB = 0,

where

curlu =
∂u2

∂x1
− ∂u1

∂x2
,∀u = (u1, u2),

˜curlφ = (
∂φ

∂x2
,− ∂φ

∂x1
), for every scalar function φ,

and we have the two dimensional formula ˜curl(curlB) = grad divB−4B.

Let us introduce some functional spaces and some operators to represent the MHD equation

(2.1.1) as infinite dimensional differential equations.

Define the Hilbert space V1 by

V1 = {B ∈ (H1(Ω))N ; divB = 0 in Ω and B · n = 0 on ∂Ω}.

Let P : (L2(Ω))N → H be the Leray projection, and let

A1(B) = curl(curlB) = −4B,∀B ∈ D(A1) = {B ∈ (H2(Ω))N ∩ V1; curlB× n = 0 on ∂Ω}.

We note that A and A1 are self-adjoint on H.

We endow the Hilbert space V1 with the scalar product

〈B,C〉1 =
N∑

i=1

∫

Ω

curlBi · curlCidx, ∀B,C ∈ V1.

and the norm induced by this scalar products is equivalent to the norm in (H1
0 (Ω))N , which

will be denoted by ‖ · ‖. The dual space of V1 will be denoted by V ′
1 . If there is no ambiguous,

we shall denote by 〈·, ·〉 the dual product between V1 and V ′
1 . We define now the operators

B1 : V → V ′,B2 : V1 → V ′,B3 : V × V1 → V ′
1 ,B4 : V1 × V → V ′

1 , by

〈B1(y),w〉 = b(y,y,w), ∀w ∈ V,

〈B2(B),w〉 = −b(B,B,w), ∀w ∈ V,

B3(y,B) = (y · ∇)B, ∀y ∈ V,B ∈ V1,

B4(B,y) = −(B · ∇)y, ∀y ∈ V,B ∈ V1.

Let f(t) = P f0(t) and D ∈ L(U,H) be given by D = PD0. Denote A = A × A1, D(A) =

D(A)×D(A1),V = V ×V1,H = H ×H. In the following, if there is no ambiguity, we shall still

denote by | · | and ‖ · ‖ the norms of space H and space V, respectively. Then we may rewrite

the optimal control problem (P ) as:

(P) Min
1
2

∫ T

0

|C (y(t)− y0(t))|2 +
∫ T

0

h(u(t))dt;

10



2.2 Existence results

subject to 



y′(t) + νAy(t) + B1(y(t)) + B2(B(t)) = Du(t) + f(t),
B′(t) + ηA1B(t) + B3(y(t),B(t)) + B4(B(t),y(t)) = g(t),
y(0) = y0,B(0) = B0.

(2.1.3)

with state constraint
y(t) ∈ K ∀t ∈ [0, T ]. (2.1.4)

Similar to the arguments in Refs. (15), (13) and (12), for each f ,g, Du ∈ L2(0, T ;H) and
(y0,B0) ∈ V, equation (2.1.3) has a unique solution (y,B) ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(A))
when N = 2, while in the case N = 3, for each u ∈ L2(0, T ;U), there exists 0 < T (u) ≤ T

such that (2.1.3) has a unique solution (y(·;u),B(·;u)) ∈ W 1,2(0, T ∗;H) ∩ L2(0, T ∗;D(A)) for
all T ∗ < T (u). Here T (u) is given by

T (u) =
1

C0[‖y0‖2 + ‖B0‖2 + ( 1
ν )‖f + Du‖2L2(0,T ;H) + ( 1

η )‖g‖2L2(0,T ;H)]
3
, (2.1.5)

where C0 is a positive constant independent of y0,B0,u, ν and η.
Another way to formulate the control problem is in the framework of weak solutions to

equation (2.1.3), that is (y,B) ∈ Yw = L2(0, T ;V) ∩ Cw(0, T ;H) ∩W 1,1(0, T ;V′) , satisfying ,
for each z ∈ V,C ∈ V1




〈y′(t), z〉(V ′,V ) + νa(y, z) + b(y,y, z)− b(B,B, z) = 〈Du + f , z〉(V ′,V ), a.e. in (0, T ),
〈B′(t),C〉(V ′1 ,V1) + η〈B,C〉1 + b(y,B,C)− b(B,y,C) = 〈g,C〉(V ′1 ,V1), a.e. in (0, T ),
y(0) = y0,B(0) = B0.

(2.1.6)
where Cw(0, T ;H) is the space of weak continuous functions Υ : [0, T ] → H. It is known that
there exists at least a weak solution to equation (2.1.3) for each u ∈ L2(0, T ;U) (see (13) pp.265,
Th.5.12 and (15)). We shall denote Pw = {((y,B),u) ∈ Yw × L2(0, T ;U); ((y,B),u) solution
to (2.1.6),y(t) ∈ K,∀t ∈ [0, T ]}.

The following hypothesis will be in effected throughout this chapter:
(i) K ⊂ H is a closed convex subset with nonempty interior;
(ii) C ∈ L(V ;H), D ∈ L(U ;H), y0 ∈ L2(0, T ;H ∩D(C ∗C )), f ,g ∈ L2(0, T ;H), (y0,B0) ∈ V;
(iii) h : U → (−∞,+∞] is a convex lower semicontinuous function. Moreover, there exist α > 0
and C ∈ R such that

h(u) ≥ α‖u‖2U + C, ∀u ∈ U. (2.1.7)

When we study problem (P) in the case that K is a closed convex subset of V , we need
assumption (ii’) which is assumption (ii) together with the assumption D ∈ L(U ;V ).

2.2 Existence results

By admissible pair we mean ((y,B),u) ∈ Pw, which satisfies equation (2.1.3) in the weak
sense, i.e. (2.1.6). An optimal pair is an admissible pair which minimizes (P ). To get the
existence of optimal solution, we assume there exists at least one admissible pair.
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2. OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINT
GOVERNED BY MHD EQUATIONS

Theorem 2.2.1. The optimal control problem (P) has at least one optimal pair ((ŷ, B̂), û). In
2-D, (ŷ, B̂) is strong solution to equation 2.1.3.

Remark 2.2.1. When N = 3, if we assume that the admissible control set is a bounded subset
of L2(0, T ;U), then we can consider the strong solution in a local time interval (0, T ∗). By the
similar method applied in the proof of Theorem 2.2.1, we can get the existence result, and the
optimal state function (ŷ, B̂) ∈ W 1,2(0, T ∗;H) ∩ L2(0, T ∗;D(A)). Moreover, the same result
follows when the state constraint set K is a closed convex subset of V .

2.3 The maximum principle

To get the maximum principle, we need to consider the strong solution of the MHD equations.
As we mentioned, when N = 3, we need to consider the problem of such case with bounded
admissible control set as

Uad = {u ∈ L2(0, T ;U); ‖Du‖L2(0,T ;H) ≤ L},
and then we can consider the strong solution to MHD equation in (0, T ∗), where 0 < T ∗ =
T (L + δ) < T (L). Here δ > 0 is a fixed constant, and T (L) is given by (2.1.5), i.e.

T (L) =
1

C0[‖y0‖2 + ‖B0‖2 + ( 2
ν )(‖f‖2L2(0,T ;H) + L2) + ( 1

η )‖g‖2L2(0,T ;H)]
3
. (2.3.1)

Denote D(h) = {u ∈ L2(0, T ;U);
∫ T

0
h(u)dt < +∞}. When N = 3, we shall assume that

D(h) ⊂ Uad. (2.3.2)

With this assumption, we can consider the strong solution in [0, T ∗] in 3-D without control
constraint which is included in the definition of the function h inexplicitly. We have given an
example of function h to show that this assumption can be easily fullfilled.

Since in 2-D, the strong solution to equation (2.1.3) exists on arbitrary time interval (0, T ),
such assumption is unnecessary. We still denote the interval [0, T ∗] where assumption (2.3.2)
holds by [0, T ].

We need also the following assumption:
(iv) There exists ((z̃, Ẽ), ũ) ∈ C(0, T ;H)× L2(0, T ;U) solution to equation





z̃′(t) + νAz̃ + (B′
1(y

∗))z̃ + (B′
2(B

∗))Ẽ = B1(y∗) + B2(B∗) + Dũ + f ,
Ẽ′(t) + ηA1Ẽ + (B′

4(B
∗))z̃ + (B′

3(y
∗))Ẽ = B′

4(B
∗)y∗,

z̃(0) = y0, Ẽ(0) = B0,

(2.3.3)

such that z̃(t) ∈ intK, for t in a dense subset of [0, T ].
Here (y∗,B∗) is the optimal state function for the optimal control problem (P ). B′

1(y
∗),

B′
2(B

∗),B′
3(y

∗),B′
4(B

∗) are the operators defined by

〈B′
1(y

∗)z,w〉 = b(y∗, z,w) + b(z,y∗,w),

〈B′
2(B

∗)E,w〉 = −b(B∗,E,w)− b(E,B∗,w),

〈B′
3(y

∗)E,w〉 = b(y∗,E,w)− b(E,y∗,w),

〈B′
4(B

∗)z,w〉 = b(z,B∗,w)− b(B∗, z,w).
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2.3 The maximum principle

Theorem 2.3.1. Let ((y∗(t),B∗(t)),u∗(t)) be the optimal pair for the optimal control problem
(P ). Then under assumptions (i)∼(iv), there are (p,q) ∈ L∞(0, T ;H) and ωωω ∈ BV ([0, T ];H),
such that:

D∗p(t) ∈ ∂h(u∗(t)) a.e. in [0, T ], (2.3.4)

(
p(t)
q(t)

)
= −

∫ T

t

U(s, t)
(

C ∗C (y∗(s)− y0(s))
0

)
ds−

∫ T

t

U(s, t)
(

dωωω(s)
0

)
, (2.3.5)

and ∫ T

0

〈dωωω(t),y∗(t)− x(t)〉 ≥ 0,∀x ∈ K. (2.3.6)

Here D∗, C ∗ are the adjoint operators of D, C respectively, U(s, t) is the evolution operator

generated by the operator
(

νA 0
0 ηA1

)
+

(
B′

1(y
∗)∗ B′

4(B
∗)∗

B′
2(B

∗)∗ B′
3(y

∗)∗

)
. We recognize in (2.3.5)

the mild form of the dual equation




p′(t) = νAp(t) + B′
1(y

∗)∗p(t) + B′
4(B

∗)∗q(t) + C ∗C (y∗(t)− y0(t)) + µωωω(t),
q′(t) = ηA1q(t) + B′

2(B
∗)∗p(t) + B′

3(y
∗)∗q(t), a.e. in (0, T ),

p(T ) = 0,q(T ) = 0.
(2.3.7)

Here B′
i(ξξξ)

∗ is the adjoint operator of B′
i(ξξξ), i = 1, 2, 3, 4, ξξξ = B∗ or y∗ .

Theorem 2.3.2 below is the analogue of Theorem 2.3.1 under the weaker assumption :
(v) K is a closed convex subset of V , and there are ((z̃, B̃), ũ) ∈ C(0, T ;H)×L2(0, T ;U) solution
to equation (2.3.3), such that z̃(t) ∈ intV K, for t in a dense subset of [0, T ].

Here intV K is the interior of K with respect to topology of V .

Theorem 2.3.2. Let ((y∗(t),B∗(t)),u∗(t)) be the solution for optimal control problem (P ).
Then under assumptions (ii’),(iii),(v), there are (p,q) ∈ L∞(0, T ;V′),ωωω ∈ BV ([0, T ];V ′), such
that (2.3.4) and (2.3.5) hold, and (2.3.6) holds in the sense of

∫ T

0

〈dωωω(t),y∗(t)− x(t)〉(V ′,V ) ≥ 0,∀x ∈ K. (2.3.8)

We shall consider the reflexive Banach space E as H or V , and denote by (·, ·) the dual
product between E and it’s dual of E (When E = H, it is the scalar product in H), by ‖ · ‖
the norm of E. Under the hypothesis of Theorem 2.3.1 or the hypothesis of Theorem 2.3.2, We
give a corollary here:

Corollary 2.3.1. Let the pair ((y∗,B∗),u∗) be the optimal pair in problem (P), then there
exist ωωω∈ BV ([0, T ];E′) and (p,q) ∈ L∞(0, T ;E′) satisfying along with ((y∗,B∗),u∗), equations
(2.3.4),(2.3.5),(2.3.6) (or(2.3.8)) and

ωωωa(t) ∈ NK(y∗(t)), a.e. in (0, T ), (2.3.9)

dωωωs ∈ NK(y∗). (2.3.10)
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2. OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINT
GOVERNED BY MHD EQUATIONS

Here ωωωa(t) is the weak derivative of ωωω(t), and dωs is the singular part of measure dωωω.
NK(y∗(t)) is the normal cone to K at y∗(t), and NK(y∗) is the normal cone to K at y∗ which
is precised in 1.3.11 (See the proof of Corollary 1.3.1).
Similarly, we can apply the maximum principles obtained in this Section to the examples in the
last Chapter.
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3

Boundary optimal control of
time-periodic Stokes-Oseen flows

3.1 Formulation of the Problem

Here we shall consider the optimal control problem :

(P) Min{ 1
2

∫ T

0

∫
Ω
|∇(y − y0)|2dxdt + 1

2

∫ T

0

∫
∂Ω
|u|2dxdt}

subject to the periodic Stokes-Oseen equations with Dirichlet boundary condition:




dy
dt − ν4y + (f1 · ∇)y + (y · ∇)f2 +∇p = f0 in Ω× (0, T ),
y(0) = y(T ) in Ω,
∇ · y = 0 in Ω× (0, T ),
y = u on ∂Ω× (0, T ).

(3.1.1)

Here, Ω is a bounded open subset with smooth boundary in R2. Function u(t) ∈ U,∀t ∈ (0, T )
is the boundary control, where U = {u ∈ (L2(∂Ω))2;u · n = 0}. Here, n is the outer normal
vector of ∂Ω. The function y0 ∈ L2(0, T ; (H1(Ω))2) is the objective velocity field. The functions
fi(x), i = 1, 2 are steady state functions and fi ∈ (W 2,∞(Ω))2 ∩H.

Define the spaces
V s := (Hs(Ω))2 ∩H, s ∈ R,

where Hs(Ω) is the Sobolev space. The norms of spaces (Hs(Ω))2 and V s will be denoted by
‖ · ‖s. Denote by A0 the operator defined by A0y = P ((f1 · ∇)y + (y · ∇)f2). Then operator
A = νA+A0 : D(A)(= V ∩ (H2(Ω))2) → H can be defined on the space H with image in space
(D(A∗))′, which is the dual space of D(A∗)(= D(A)), by transition

〈Ay, z〉((D(A∗))′,D(A∗)) := 〈y,A∗z〉.

Here, 〈·, ·〉((D(A∗))′,D(A∗)) denotes the dual pair of the space (D(A∗))′ and D(A∗). We still
denote by A the extended operator. The operator A∗ is the adjoint operator of A which is
defined by

A∗z := νAz + P (−(f1 · ∇)z + z · (∇f2)T ),∀z ∈ D(A).
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3. BOUNDARY OPTIMAL CONTROL OF TIME-PERIODIC STOKES-OSEEN
FLOWS

Define the operator D : (Hs(∂Ω))2 → (H
1
2+s(Ω))2, s ≥ 1/2, by the solution z = Du to the

following equation




kz− ν4z + (f1 · ∇)z + (z · ∇)f2 +∇p1 = 0 in Ω,
divz = 0 in Ω,
z = u on ∂Ω.

(3.1.2)

We see that y is the solution to the following equation (see (16), pp.114-115),

dy(t)
dt

+ Ay(t) = AkDu(t) + f(t), t ∈ (0, T ); y(0) = y(T ), (3.1.3)

where Ak = kI + A. Equivalently,

d

dt
〈y(t), z〉+ 〈y(t),A∗z〉 = 〈u(t), D∗A∗kz〉U + 〈f(t), z〉,∀z ∈ D(A),∀t ∈ (0, T ). (3.1.4)

Here, 〈·, ·〉U denotes the inner product in the control space U , which is defined as the same

as that in space (L2(∂Ω))2. It is easy to see, via Green’s formula, that the dual D∗A∗k of the

operator AkD is given by (see (16), Lemma 3.3.1)

D∗A∗kz = −ν
∂z
∂n

,∀z ∈ D(A). (3.1.5)

3.2 Existence of Optimal Solutions

A pair (y,u) ∈ L2(0, T ;V 1) × L2(0, T ;U) is called the optimal solution to optimal control

problem (P) if it is the solution to the equation (3.1.3) and minimizes the cost functional J(·, ·).
If 1 is an eigenvalue of the operator e−AT , we denote by {Ψi}N

i=1, {Ψ∗i }N
i=1 the (normalized)

linearly independent eigenfunctions corresponding to eigenvalue 1 of e−AT and e−A∗T , respec-

tively. To get the existence of admissible pairs, we need the following assumptions for operator

e−AT

(H1): The finite-dimensional spectral assumption (FDSA): We assume that, for the eigenvalue

1 of operator e−AT , algebraic and geometric multiplicity coincide.

(H2): The solution to the equation





dz(t)
dt −A∗z(t) = 0, t ∈ (0, T ),

z(T ) = z(0),
z|∂Ω = 0,

(3.2.6)

is 0 when ∂z
∂n = 0 on (0, T )× ∂Ω.

Now, we can prove the existence of optimal solutions.

Theorem 3.2.1. There exists at least one optimal solution for optimal control problem (P)
under assumptions (H1) and (H2).

16



3.3 Maximum Principle for Optimality

3.3 Maximum Principle for Optimality

Define the operator D̃ : L2(0, T ;U) → L2(0, T ;H) by the solution z̃ = D̃u to the following
equation

dz̃
dt

+ Akz̃(t) = AkDu(t), t ∈ (0, T ); z̃(0) = z̃(T ). (3.3.7)

When u ∈ U (:= W 1,2([0, T ]; (H1/2(∂Ω))2)), we can rewrite the equation (3.3.7) as

dz
dt

+ Akz = −d(Du)
dt

, t ∈ (0, T ); z(0) = z(T ), (3.3.8)

where z = z̃−Du. Since the operator Ak is dissipative and generates a compact semigroup, it
follows by Schauder fixed point Theorem that equation (3.3.8) admits a unique periodic solution
z ∈ L2(0, T ;V )∩C([0, T ];H), which yields that equation (3.3.7) has a unique periodic solution
z̃ ∈ L2(0, T ;V 1) for each u ∈ U , and

‖z̃‖L2(0,T ;V 1) ≤ C‖u‖U .

Here, ‖ · ‖U denotes the norm of the Sobolev space U . Therefore, the operator D̃ is continuous
from U to L2(0, T ;V 1), and so the adjoint operator D̃∗ is continuous from L2(0, T ; (V 1)′) to
U ′, where U ′ is the dual space of U with pivot space L2(0, T ;U).

Define the operator 4̃ : V 1 → (V 1)′ by

〈4̃y, z〉((V 1)′,V 1) := 〈∇y,∇z〉.

It is easy to check that the operator 4̃ is linear continuous from V 1 to (V 1)′.
For the necessary condition of the optimal pair (y∗,u∗), we have the following Theorem.

Theorem 3.3.1. Let (y∗,u∗) be the optimal pair of the optimal control problem (P); then
there exists q ∈ L2(0, T ; (V 1)′) such that





dq
dt (t)−A∗q(t) = ∆̃(y∗(t)− y0(t)), in (0, T ),
q(0) = q(T ),
D̃∗q(t) = 1

k (D̃∗4̃(y∗(t)− y0(t))− u∗(t)), a.e. in (0, T ).
(3.3.9)

More precisely, we have q(t) = q1(t) + q2(t), where q1 ∈ L2(0, T ;V ) ∩W 1,2([0, T ];V ′), q2 ∈
L2(0, T ; (V 1)′) and q1,q2 satisfy the following equations





dq1
dt (t)−A∗q1(t) = ∆̃(y∗(t)− y0(t)), in (0, T ),

dq2
dt (t)−A∗q2(t) = 0, in (0, T ),

D̃∗(q1(t) + q2(t)) = 1
k (D̃∗4̃(y∗(t)− y0(t))− u∗(t)), a.e. in (0, T ).

(3.3.10)

3.4 Optimal Control for a Plane-Periodic Flow in 2-D
Channel

Consider a laminar flow in a two dimensional channel with the walls located at y = 0, 1. We
shall assume that the velocity field z(t, x, y) = (g(t, x, y), h(t, x, y)) and the pressure p(t, x, y)
are 2π periodic in x ∈ (−∞,+∞).
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3. BOUNDARY OPTIMAL CONTROL OF TIME-PERIODIC STOKES-OSEEN
FLOWS

The dynamic of the flow is governed by the incompressible 2-D Stokes-Oseen Equations




gt − ν4g + gxU + hU ′ = px + f1, y ∈ (0, 1), x, t ∈ R,
ht − ν4h + hxU = py + f2, y ∈ (0, 1), x, t ∈ R,
gx + hy = 0, y ∈ (0, 1), x, t ∈ R,
g(t, x + 2π, y) ≡ g(t, x, y), h(t, x + 2π, y) ≡ h(t, x, y), y ∈ (0, 1), x, t ∈ R,
g(t + T, x, y) ≡ g(t, x, y), h(t + T, x, y) ≡ h(t, x, y), y ∈ (0, 1), x, t ∈ R.

(3.4.11)

Here, we consider a steady-state flow U(x, y) as a solution to the Navier-Stokes equation with

zero vertical velocity component, i.e. U(x, y) = (U(x, y), 0). Since the flow is freely divergent,

we have Ux ≡ 0, and so U(x, y) ≡ U(y). This yields that

U(y) = C(y2 − y),∀y ∈ (0, 1),

where C ∈ R−. In the following, we take C = − a
2ν , where a ∈ R+. (See(17), Section 3.5; see

also (18))

Here, we want to apply Theorem 3.3.1 to obtain the necessary conditions for the optimal

pair of optimal control problem (P) governed by system (3.4.11). To this aim, we recall first the

Fourier functional setting for description of periodic fluid flows in the channel (−∞,+∞)×(0, 1).

Let L2
π(Q), Q = (0, 2π) × (0, 1) be the space of all functions g ∈ L2

loc(R × (0, 1)) which are

2π−periodic in x. Similarly, H1
π(Q),H2

π(Q) are defined. For instance,

H1
π(Q) :=

{
g; g =

∑

k

ak(y)eikx, ak = ā−k, a0 = 0,
∑

k

∫ 1

0

(k2|ak|2 + |a′k|2)dy < ∞
}

.

We set

H :=
{
(g, h) ∈ (L2

π(Q))2; gx + hy = 0, h(x, 0) = h(x, 1) = 0
}

.

If gx +hy = 0, then, the trace of (g, h) at y = 0, 1 is well defined as an element of H−1(0, 2π)×
H−1(0, 2π)(see, e.g., (12)).

We also set

V :=
{
(g, h) ∈ H ∩ (H1

π(Q))2; g(x, 0) = g(x, 1) = h(x, 0) = h(x, 1) = 0
}

.

As defined above, the space L2
π(Q) is, in fact, the factor space L2

π(Q)/Z.

Let P : (L2
π(Q))2 → H be the Leray projector and A : D(A) ⊂ H → H be the operator

defined by

A(g, h) := P (−ν4g+gxU +hU ′,−ν4h+hxU),∀(g, h) ∈ D(A) = H2((0, 2π)×(0, 1)). (3.4.12)

We associate with (3.4.11) the boundary value conditions

g(t, x, 0) = u0(t, x), g(t, x, 1) = u1(t, x), t ≥ 0, x ∈ R,
h(t, x, 0) = v0(t, x), h(t, x, 1) = v1(t, x), t ≥ 0, x ∈ R,

(3.4.13)
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3.4 Optimal Control for a Plane-Periodic Flow in 2-D Channel

and, for k > 0 sufficiently large, we can define the Dirichlet map D : X → H by D(u, v) := (g̃, h̃),




kg̃ − ν4g̃ + g̃xU + hU ′ = px, y ∈ (0, 1), x ∈ R,

kh̃− ν4h̃ + h̃xU = py, y ∈ (0, 1), x ∈ R,

g̃x + h̃y = 0, y ∈ (0, 1), x ∈ R,

g̃(x + 2π, y) ≡ g̃(x, y), h̃(x + 2π, y) ≡ h̃(x, y), y ∈ (0, 1), x ∈ R,

g̃(x, y) = u(x, y), h̃(x, y) = v(x, y), y = 0, 1, x ∈ R.

(3.4.14)

Here,
X = {(u, v) ∈ L2((0, 2π)× ∂(0, 1));u(x + 2π, y) = u(x, y),
v(x + 2π, y) = v(x, y), v(x, 0) = v(x, 1) = 0,∀x ∈ (0, 2π)}.

Then system (3.4.11) with boundary conditions (3.4.13) can be written as

d

dt
z(t) + Az(t) = AkDu(t) + f(t), t ≥ 0; z(0) = z(T ), (3.4.15)

where z = (g, h),u = (u, v), f = (f1, f2). We denote again by A the extension of A on the
complexified space H̃ and denote by A∗ the dual operator of A. In order to apply Theorem
3.3.1, we shall show in following lemma that assumption (H2) holds true in this case.

Lemma 3.4.1. The solution to the equation




dz(t)
dt −A∗z(t) = 0, t ∈ (0, T ),

z(T ) = z(0),
z|∂Q = 0,

(3.4.16)

is 0 when ∂z(x,y)
∂n = 0 for x ∈ (0, 2π), y = 0, 1, where A is defined as in (3.4.12).

If 1 ∈ σ(e−AT ), and Φ is the corresponding eigenfunction, then Φ = w(0), where w(t, x, y) =
(g(t, x, y), h(t, x, y)) is the solution to the equation





gt − ν4g + gxU + hU ′ = px, y ∈ (0, 1), x, t ∈ R,
ht − ν4h + hxU = py, y ∈ (0, 1), x, t ∈ R,
gx + hy = 0, y ∈ (0, 1), x, t ∈ R,
g(t, x + 2π, y) ≡ g(t, x, y), h(t, x + 2π, y) ≡ h(t, x, y), y ∈ (0, 1), x, t ∈ R,
g(t + T, x, y) ≡ g(t, x, y), h(t + T, x, y) ≡ h(t, x, y), y ∈ (0, 1), x, t ∈ R.

(3.4.17)

Using the same arguments applied in the proof of Lemma 3.4.1, we can reduce equation (3.4.17)
to be

−νhiv
kl + (2νk2 + ikU +

2jπl

T
)h
′′
kl − k(

2jπlk

T
+ νk3 + ik2 + iU

′′
)hkl = 0, y ∈ (0, 1). (3.4.18)

Denote by Σ the subspace of H which is defined by
Σ := {(∑k,l

i
keikxh′kl(y),

∑
k,l e

ikxhkl(y));hkl(y) solution to equation (3.4.18)}.
In fact, Σ is the space spanned by the eigenfunctions corresponding to eigenvalue 1. We shall
assume, in this case, the following assumption holds.
(H1’) dim(Σ) equal to the algebraic multiplicity of eigenvalue 1.
With this assumption and the result we obtained in Lemma 3.4.1, we have the following result.

Theorem 3.4.1. There exists optimal solution (z∗,u∗) to the optimal control problem (P )
governed by system (3.4.11) (or 3.4.15), and there exists q ∈ L2(0, T ; (V 1)′) such that q, z∗,u∗

satisfy system (3.3.9).
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4

Boundary optimal feedback
controller for time-periodic
Stokes-Oseen equations

4.1 Introduction

Here we shall consider the optimal control problem :

(P0) Min{1
2

∫ T

0

∫

Ω

|y|2dxdt +
1
2

∫ T

0

∫

Γ

|u|2dxdt}

subject to the periodic Stokes-Oseen equations with Dirichlet boundary condition:




dy
dt − ν4y + (f1 · ∇)y + (y · ∇)f2 +∇p = f0 in Ω× (0, T ),
y(0) = y(T ) in Ω,
∇ · y = 0 in Ω× (0, T ),
y = u on Γ× (0, T ).

(4.1.1)

Here Ω is a bounded open subset with smooth boundary Γ in R2. Function u(t) ∈ U,∀t ∈
(0, T ) is the boundary control, where U = V 0(Γ) .= {u ∈ (L2(Γ))2; 〈u·n, 1〉((H−1/2(∂Ω))2,(H1/2(∂Ω))2) =
0}. Here n is the outer normal vector of Γ, fi(x), i = 1, 2 are steady state functions and
fi ∈ (W 2,∞(Ω))2 ∩ V 0(Ω), where space V 0(Ω) is defined by

V 0(Ω) = {y ∈ (L2(Ω))2;∇ · y = 0, 〈y · n, 1〉((H−1/2(Γ))2,(H1/2(Γ))2) = 0}.

The space V 0(Ω) is a closed subspace of (L2(Ω))2, and it is a Hilbert space with the scalar
product

〈y, z〉 =
∫

Ω

y · zdx,

and the corresponding norm |y| = (
∫
Ω
|y|2dx)1/2.(We shall denote by the same symbol | · | the

norms in R2, L2(Ω)2 and V 0(Ω). The scalar product in (L2(Ω))2 is the same as in V 0(Ω),
which will be also denoted by 〈·, ·〉 if there is no ambiguous.) Define the spaces

V s(Ω) = (Hs(Ω))2 ∩ V 0(Ω), s ≥ 0,
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V s
n (Ω) = {y ∈ (Hs(Ω))2,∇ · y = 0,y · n = 0}, s ≥ 0,

V s
0 (Ω) = {y ∈ (Hs(Ω))2,∇ · y = 0, y = 0 on Γ}, s ≥ 1/2,

V s(Γ) = {u ∈ (Hs(Γ))2, 〈u · n, 1〉((H−1/2(Γ))2,(H1/2(Γ))2) = 0}, s ≥ −1/2,

V s
n (Γ) = {u ∈ V s(Γ),u · n = 0}, s ≥ −1/2,

where Hs(Ω),Hs(Γ) are the Sobolev spaces. The norms of spaces (Hs(Ω))2 and V s will be
denoted by ‖ · ‖s. The norm ‖ · ‖1 will denote by ‖ · ‖ for simplicity. We shall also denote by
| · | and 〈·, ·〉 the norm and inner product respectively of spaces L2(Γ), V 0(Γ) and V 0

n (Γ). We
shall use the following notation QT = Ω× (0, T ),ΣT = Γ× (0, T ). For spaces of time dependent
functions we set

V s,σ(QT ) = Hσ(0, T ;V 0(Ω)) ∩ L2(0, T ;V s(Ω)),

V s,σ(ΣT ) = Hσ(0, T ;V 0(Σ)) ∩ L2(0, T ;V s(Σ)).

For all ψ ∈ H1/2+ε(Ω) with ε > 0, we denote by c(ψ) the constants defined by

c(ψ) =
1
|Γ|

∫

Γ

ψ. (4.1.2)

Let us define the operators γτ ∈ L(V 0(Γ)), γn ∈ L(V 0(Γ)) by

γτu = u− (u · n)n, γnu = (u · n)n = u− γτu.

Lemma 4.1.1. The operators γτ and γn satisfy

γτ = γ∗τ , γn = γ∗n, and (I − P )D = (I − P )Dγn.

Lemma 4.1.2. The operator
RA = D∗(I − P )D + I

is an isomorphism from V 0(Γ) into itself. Moreover, for all 0 ≤ s ≤ 3/2, its restriction to
V s(Γ) is an isomorphism from V s(Γ) into itself. In addition RA satisfies

RAγn = γnRAγn, RAγτ = γτRAγτ = γτ .

The restriction of RA to V 0
τ (Γ) is an isomorphism from V 0

τ (Γ) into itself, and we have

R−1
A u = (γnRAγn)−1u = γnR−1

A u,∀u ∈ V 0
τ (Γ).

We introduce the operators Fn = AkPDγn, Fτ = AkPDγτ , F = Fn+Fτ . where Ak = kI+A.

Proposition 4.1.1. For all Φ ∈ D(A), B∗Φ ∈ V 1/2(Γ), we have

F ∗Φ = D∗A∗kΦ, F ∗τ Φ = γτD∗A∗kΦ, F ∗nΦ = γnD∗A∗kΦ,

and
F ∗Φ = −ν

∂Φ
∂n

+ ψn− c(ψ)n, F ∗τ Φ = −ν
∂Φ
∂n

, F ∗nΦ = ψn− c(ψ)n,

with
∇ψ = (I − P )(ν4Φ + (f1 · ∇)Φ + (∇f2)T Φ).
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We rewrite equation (4.1.1) in the form

Py′ + APy = Fu + f ,y(0) = y(T ), (4.1.3)

(I − P )y = (I − P )Dγnu. (4.1.4)

where f = P f0.
From the argument in (19), we can rewrite the cost functional as following

J(y,u) =
1
2

∫ T

0

∫

Ω

|Py|2dxdt +
1
2

∫ T

0

∫

Γ

(|R1/2
A γnu|2 + |γτu|2)dxdt,

The control problem (P0) is equivalent to
(P) inf{J(y,u)|(y,u) satisfies (4.1.3), u ∈ V 0,0(ΣT )}

4.2 Existence of Optimal Solution and Maximum Princi-
ple

By optimal solution to optimal control problem(OCP) (P) we mean a pair (y,u) ∈ L2(0, T ;V 0(Ω))×
L2(0, T ;V 0(Γ)) solution to (4.1.3) and minimize the cost functional J(y,u).

As stated in Section 4.3, the existence of periodic solution to equation (4.1.1) does not hold
in general, and even the existence of admissible pair for the optimal control problem is not
trival.

Theorem 4.2.1. There exists a unique optimal solution (y∗,u∗) for optimal control problem
(P) under assumptions (H1) and (H2).

We can also derive the maximum principle for optimal solution (y∗,u∗).

Theorem 4.2.2. The admissible pair (y∗,u∗) solution to OCP (P) if and only if there is
function q ∈ L2(0, T ;D(A)) ∩ H1([0, T ], V 0

n (Ω)) satisfies together with (y∗,u∗) the following
system 




dq
dt (t)−A∗q(t) = Py∗, t ∈ (0, T ),
q(0) = q(T ),
u∗(t) = F ∗τ q(t) + R−1

A F ∗nq(t), a.e.t ∈ (0, T ).
(4.2.1)

More precisely, we have q(t) = q1(t) + q2(t), where q1,q2 ∈ V 2,1(QT ), and q1,q2 satisfy the
following equation





dq1
dt (t)−A∗q1(t) = Py∗(t), t ∈ (0, T ),

dq2
dt (t)−A∗q2(t) = 0, t ∈ (0, T ),

u∗(t) = F ∗τ q(t) + R−1
A F ∗nq(t), a.e.t ∈ (0, T ).

(4.2.2)

Moreover, we can obtain the following regularity properties for the optimal solution via the
Euler-Lagrange system.

Theorem 4.2.3. Let f ∈ L2(0, T ; (V 2ε(Ω))′), then the optimal solution (y∗,u∗) satisfy u∗ ∈
V 1−ε,1/2−ε(ΣT ), Py∗ ∈ V 3/2−ε,3/4−ε/2(QT ), and the following estimate holds

‖Py∗‖V 3/2−ε,3/4−ε/2(QT ) ≤ C‖f‖L2(0,T ;(V 2ε(Ω))′). (4.2.3)
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4.3 Feedback control and application

In the sequel we shall only consider the tangential Dirichlet control for the convenient to
present the idea of the feedback synthesis and it’s application. Denote here by H the space
V 0

n (Ω).
To get the optimal feedback controller of optimal control problem (P), we consider the dual

optimal control problem:

min{∫ T

0

(
1
2 (|F ∗p(t)|2 + |y(t)|2) + 〈f(t),p(t)〉) dt;

p′ −A∗p = y,p(0) = p(T ),y ∈ L2(0, T ;H)}. (4.3.1)

Equivalently,

min{∫ T

0

(
1
2 (|F ∗p(t)|2 + |y(t)|2) + 〈f(T − t),p(t)〉) dt;

p′ + A∗p = y,p(0) = p(T ),y ∈ L2(0, T ;H)}. (4.3.2)

If (p,y) is an optimal pair in problem (4.3.1), then it follows via maximum principle and duality
arguments that (−y(T − t),−F ∗p(T − t)) is optimal in problem (P).

The dynamic programming equation corresponding to problem (4.3.2) is

ψt(t,p) +
1
2
|ψp(t,p)|2 + 〈A∗p, ψp(t,p)〉 =

1
2
|F ∗p|2 + 〈f(t),p〉, (4.3.3)

where ψp = ∇pψ.
For the existence of solution to system (4.3.3), we have the following Theorem.

Theorem 4.3.1. There is a continuous function ψ : [0, T ] × H → R which is convex and
Gateaux differentiable in p, absolutely continuous in t for each p ∈ D(A), satisfies a.e. in
(0, T ) Eq. (4.3.2), and

ψ(0,p)− ψ(T,p) = µ, (4.3.4)

for some µ ∈ R.

Before proving Theorem 4.3.1, we pause briefly to present a few consequences.
Consider the feedback law,

z(t) = −ψp(T − t,p(t)), t ∈ (0, T ), (4.3.5)

where p is the solution to closed loop system

p′ −A∗p + ψp(T − t,p(t)) = 0, t ∈ (0, T );p(0) = p(T ). (4.3.6)

We shall assume here that equation 4.3.6 has at least one solution (see remarks of Theorem 2 in
(20). If p∗ is a solution to equation (4.3.6), then by a standard calculation involving equation
(4.3.4) it follows that the pair (p∗(t),−ψp(T − t,p∗(t))) is the optimal in the dual problem
(4.3.2) and so as mentioned earlier the pair

y∗(t) = ψp(t,p∗(T − t)),u∗(t) = −F ∗p∗(T − t) (4.3.7)
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is optimal in problem (P). In other words,

u∗(t) = −F ∗ψ∗y(t,y∗(t)), t ∈ (0, T ) (4.3.8)

is an optimal feedback controller for problem (P). Here ψ∗ is the conjugate of the function
p → ψ(t,p). Summarizing we have

Theorem 4.3.2. Assume that the periodic problem (4.3.6) has a mild solution p ∈ C([0, T ];H).
Then the feedback control (4.3.8) is optimal in problem (P).

In the following, we give an application of the optimal synthesis results obtained above.
Consider now the periodic Navier-Stokes equation with homogeneous Dirichlet boundary

condition 


−ν4ye + (ye · ∇)ye +∇p = f0 in Ω,
∇ · ye = 0 in Ω,
ye = 0 on ∂Ω.

(4.3.9)

We assume that the solution ye is regular enough. When the force term f0 is perturbed by
another time-periodic force f , the perturbed periodic solution satisfies the following equation





y′(t)− ν4y + (y · ∇)y +∇p = f0 + f(t) in Ω,
∇ · y = 0 in Ω,
y(0) = y(T ) in Ω,
y = 0 on ∂Ω.

(4.3.10)

However, this perturbed periodic solution may do not stay near the original solution no matter
how small the perturbation is. It is kind of property of non-continuity dependent of the outer
force term for the periodic Navier-Stokes equation. We shall prove below that we can put a
boundary feedback control to overcome this defects for each perturbation f small enough. Still
denote Ay = Ay + P ((ye · ∇)y + (y · ∇)ye). We have the following satbilization result.

Theorem 4.3.3. For all 0 < ε < 1/4, There is a constant µ0 > 0 and a nondecreasing function
η from R+ into itself, such that for each µ ∈ (0, µ0) and ‖f‖L2(0,T ;V 0(Ω)) ≤ η(µ), there is a
feedback boundary input u(t) = −F ∗ψ∗y(t,y(t)) such that the periodic equation

{
dy
dt + Ay + By = Fu + f ,
y(0) = y(T ).

(4.3.11)

admits a unique solution, in the set

Dµ = {y ∈ V 3/2−ε,3/4−ε/2(QT ); ‖y‖V 3/2−ε,3/4−ε/2(QT ) ≤ µ,y(0) = y(T )}.

and the following estimate holds

‖y‖V 3/2−ε,3/4−ε/2(QT ) ≤ C‖f‖L2(0,T ;V 0(Ω)). (4.3.12)
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